

General Descriptions of Processes

- Atmospheric Processes describe the contribution of lighting and heat into the water column.
- Water Column Processes incorporate the contribution from the atmosphere (lighting, heat, etc.) and from the sediment at the bottom layer, which are combined with the aqueous chemical/biological processes for different constituents of interest.
- Sediment Processes describe the contribution of the particulate constituents from the sediment layer into the water column.

General Descriptions of Processes (continued)

- Atmospheric Processes (Lighting, Heat, Aeration (Gas-Liquid))
- Water Column Processes (Flow among Nodes/Segments, Exchanges (e.g., Dispersion), Chemical/Biological Reactions (Nitrification, Denitrification, Reaeration, Photosynthetic Processes from Lighting in Atmosphere, etc.), Macro/Benthic Algae Contributions, etc.)
- Sediment Processes (Sediment Diagenesis Routines, Benthic Nutrient Fluxes)

Model/Nodes Setup in WASP

Model/Node Setup in WASP

- "Boxed" Model
- Flows as Inputs into WASP
 - Uni-directional flow only in WASP
 - Hydrodynamic Linkage Required for Lakes/Reservoirs
 - Hydrologic Processes NOT included/simulated in WASP
 - Precipitation/Evaporation Processes as <u>inputs</u> but only impact flows into model
 - Mass Constituent Loadings (Mass Rates) and Sources (e.g., WWTP sources) as inputs into model

Supplementary WASP Materials (continued)

- Website for User Manuals: http://epawasp.twool.com/docs/
- Website for Tutorials: http://epawasp.twool.com/tutorials/
- Website for Installers: http://epawasp.twool.com/installers/ (Open-Source)

Constituents/System Variables for Utah Lake WASP

General Model Description, System Variables/Constituents Simulated

9

Utah Lake Model

- Approximately 1650 Water Columns
- EFDC Hydrodynamic Linkage
- 3-5 Layers for each water column
- 11 inflows
 - Provo River
 - American Fork River
 - Timpanogos WWTP
 - Lindon Drain
 - · Powell Slough
 - Mill Race
 - Dry Creek
 - Spanish Fork River
 - Benjamin Slough
 - Hobble Creek
- 1 outflow (Jordan River)

Constituents for Utah Lake WASP- The "Basics"

- Water Temperature
- pH
- Alkalinity
- Total Dissolved Solids (Freshwater)

Constituents for Utah Lake WASP- Nutrients

- Nitrogen Species: Ammonia-Nitrogen, Inorganic Nitrogen (Nitrate and Nitrite), Organic Nitrogen (Dissolved and Particulate)
- **Phosphorus Species:** Dissolved Inorganic Phosphate, Organic Phosphate (Dissolved and Particulate)
- Carbonaceous Biochemical Oxygen Demand (CBOD): up to 5 ultimate CBOD groups
- Phytoplankton: up to 5 groups
- Dissolved Oxygen
- Macro Algae: Chlorophyll-a, Nitrogen, Phosphorus Components; up to 5 groups for Macro Algae; can be Benthic (not transported) or Macro (transported) Algae for each group

13

Constituents for Utah Lake WASP- Sediments

- Particulate Organic Matter (POM)/Total Detritus
 - Particulate Organic Carbon (POC)/Detrital Carbon
 - Particulate Organic Nitrogen (PON)/Detrital Nitrogen
 - Particulate Organic Phosphate (POP)/Detrital Phosphate
 - Note: 1 group allowed for each of <u>POC</u>, <u>PON</u>, <u>POP</u>, and <u>POM</u>
- Inorganic Suspended Solids (TSS): up to 5 groups allowed in WASP; sediment/solids transport optional but NOT recommended for WASP

Input Parameters

Environmental Time Functions, Segment/Node Characteristics, Sources and Loadings, Meteorological/Chemical/Biological Constants

1

Notes for the Following Slides on Input Parameters

- 1. Only the "significant" parameters are included. ALL parameters listed are eligible to be calibrated against the measured data.
- 2. A parameter that is indicated with "*" means that the parameter can be simulated as an output in WASP (e.g., the **sediment diagenesis routine**).
- 3. A parameter that is indicated with "+ (value)" means that the parameter may exhibit a "typical" value other than a default value assigned by WASP, based upon the Jordan River Qual2K Model (Utah Division of Water Quality 2009). Sensitivity/Calibration approaches for some to significant amount of these parameters will be implemented based upon such typical values assigned.
- 4. All decay, mineralization, and chemical rates correspond to those at **20 degrees C**.

Atmospheric Processes

- Meteorological Time Functions (up to 4 sets of time series each)
 - Air Temperature (Celsius)
 - Dewpoint Temperature (Celsius)
 - Wind Speed (Meters/Second)
 - Solar Radiation (W/m²)
 - Cloud Cover (Fraction)
- Lighting Constants (apply to entire model):
 - Surface/Water Albedo
 - Detritus and Inorganic Solids Lighting Constant (1/m)
 - Light Fraction as Photosynthetically Active Radiation (PAR)
 - Background Light Extinction (1/m)
 - DOC Light Extinction Constant (1/m) (can be applied for each CBOD group)
 - Light Constant for Macro/Benthic Algae Growth (Langley/Day)
 - Phytoplankton (per group) Optimal Light Sat as PAR (W/m²)

1

For the "Basic Constituents"

 Water Temperature: Coefficient of Bottom-Heat Exchange (W/m2-Celsius), Sediment Ground Temperature (Celsius)
 Water Temperature Model from Wool, Ambrose, and Martin "WASP8 Temperature Model Theory and User's Guide"

$$H_n = H_S + H_A + H_E + H_C - (H_{SR} + H_{AR} + H_{BR})$$
Computed based upon Solar Radiation Terms

- pH and Alkalinity: Atmospheric Pressure for CO₂ (atm)
- Solids (TSS): Settling Velocity (m/day) (applied to each node)

Nitrogen Species

- Inorganic Nitrogen (Ammonia-Nitrogen, Nitrate and Nitrite Nitrogen)
 - Nitrification Rate at 20 degrees Celsius (1/day) + (2)
 - Nitrification Temperature Correction Coefficient + (1.07)
 - Ammonia-Nitrogen Benthic Flux (mg/m²day)*
 - Denitrification Rate (1/day) + (0.05)
 - Denitrification Temperature Correction Coefficient + (1.07)
- Dissolved Organic Nitrogen
 - Mineralization Rate (1/day) + (0.4)
 - Mineralization Rate Temperature Coefficient + (1.07)

19

Phosphorus Species and CBOD

- Dissolved Inorganic Phosphate
 - Inorganic Phosphate Benthic Flux (mg/m²day)*
- Dissolved Organic Phosphate
 - Mineralization Rate (1/day) + (0.05)
 - Mineralization Rate Temperature Coefficient + (1.07)
- CBOD (For Each Group; up to 5 Groups allowed)
 - Decay Rate (1/day)
 - Decay Rate Temperature Coefficient + (1.07)
 - Fraction of Detritus (POM) Dissolution to CBOD
 - Fraction of CBOD Carbon Source for Denitrification

Dissolved Oxygen and Detritus (POM)

Dissolved Oxygen (DO)

- Elevation of Node from sea level (m); for DO Saturation
- Temperature Correction for Reaeration + (1.024)
- Sediment Oxygen Demand (g/m²day)*
- Temperature Correction for Sediment Oxygen Demand (SOD) + (1.07)
- Macro Algae O2:C Production (mg O₂/mg C)

• Detritus (POM)

- Dissolution Rate (1/day) + (0.1)
- Temperature Correction for Dissolution + (1.07)
- Settling Velocity (m/day) + (0.1)

21

Phytoplankton

General Rates and Temperature Correction Coefficients

- Maximum Growth Rate (1/day)
- Growth Temperature Coefficient
- Respiration Rate (1/day)
- Respiration Rate Temperature Coefficient
- Death Rate (Non-zoo predation) (1/day)
- Settling Velocity (m/day) (can be applied to each node)

Stoichiometric Ratios

- Detritus to Carbon (mg Dry Weight/mg C)
- Nitrogen to Carbon (mg N/mg C)
- Phosphorus to Carbon (mg P/mg C)
- Chlorophyll-a to Carbon (mg C/mg Chlorophyll-a)

Phytoplankton (continued)

• Fraction Respiration per Group

- · Fraction Recycled to Organic N
- Fraction Recycled to Organic P

Fraction Death per Group

- Fraction Recycled to PON
- Fraction Recycled to POP

23

Macro/Benthic Algae

Fractions

- Fraction of each bottom node covered by benthic algae (if NOT transported)
- · Fraction recycled to Organic N
- Fraction recycled to Organic P

Kinetics

- Max Growth Rate (g Dry Weight/m2-day for 0th order; 1/day for 1st order)
- Respiration Rate (1/day)
- Death Rate (1/day)
- · Several others...

Stoichiometric Ratios

- Phosphorus to Carbon (mg P/mg C)
- Chlorophyll-a to Carbon (mg Chlorophyll-a/mg C)
- Nitrogen to Carbon (mg N/mg C)
- Detritus/POM to Carbon (mg Dry Weight/mg C)

Half-Saturation Constants

- Nitrogen Species: Nitrification Half-Sat Oxygen Limit (mg O2/L),
 Denitrification Half-Sat Oxygen Limit (mg O2/L)
- CBOD (for each group): CBOD Half-Sat Oxygen Limit (mg O2/L)
- Phytoplankton (for each group): Half-Sat for Mineralization (mg Phytoplankton C/L), Half-Sat for N Uptake (mg N/L), Half-Sat for P Uptake (mg P/L)
- Macro/Benthic Algae: Half-Sat Uptake Constant for Extracellular N (mg N/L), Half-Sat Uptake Constant for Extracellular P (mg P/L), Half-Sat Uptake for Intracellular N (mg N/L), Half-Sat Update for Intracellular P (mg P/L)

25

Sediment Diagenesis Water Column Dissolved Particulate Constituent Organic Matter Net Settling Surface Reactions Layer 1 Dissolved Particulate Products Reaction roducts Diffusion G1 Particulate Dissolved Layer 2 Diagenesis Reaction Products Products G3 Sedimentation Sedimentation

Sediment Diagenesis Parameters

- Initial Concentrations in Each Node
 - Particulate Organic Carbon (POC)/Detrital Carbon (mg/L)
 - Particulate Organic Nitrogen (PON)/Detrital Nitrogen (mg/L)
 - Particulate Organic Phosphate (POP)/Detrital Phosphate (mg/L)
- Fractions into Each G Class <u>per node</u> (bottom nodes) with <u>sediment</u> <u>diagenesis routine enabled</u> (Previous Slide)
 - · Fraction into Class G1
 - · Fraction into Class G2
 - Fraction into Class G3
 - $\sum_{i=1}^{3} f_{G,i} = 1$
- Sediment Diagenesis Segmentation (User-Defined)
- Several others under Martin and Wool (2017) "WASP Sediment Diagenesis Routines: Model Theory and User's Guide", in WASP "Constants" → "Sediment Diagenesis"

27

General Information over Input Parameters

- Default Values used if no values are specified by user for all parameters except meteorological time functions
- Requires a calibrated EFDC hydrodynamic model (particularly water depth)
- Some to several parameters to-be-provided by Dr. Ramesh Goel's Research Group for the Project (sampling/experimental analyses over Utah Lake)
- Some lighting parameters (e.g., background light extinction, etc.) possibly provided by the Utah Division of Water Quality
- Significant amount of parameters are **constant** throughout the **entire** simulation period, with only **temperature-correction coefficients** (and other model characteristics) adjusting such values.

Sensitivity Analyses/Calibration Approaches

- Sensitivity Analyses: based upon increasing/decreasing values by a constant amount (e.g., by 0.5, 1.5, 2, etc.) for some to several of the parameters described in previous slides (due to simulation time)
- Calibration Approaches (tentatively)
 - Comparison with measured AWQMS Data for selected Utah Lake sites (measured by <u>Utah Division of Water Quality</u>)
 - Non-detects: Using 85% of Lower Quantification Limit (provided by AWQMS)
 - Calibration Period: based upon EFDC Model (anytime between Water Year 2006 to Water Year 2015)
 - Historical Baseline Simulation: Time Period to-be-determined based upon other models (DHSVM, SWMM, GoldSim, EFDC, and WASP for <u>both</u> Utah Lake and Jordan River)
 - May be based upon visual inspection (plotting simulated vs. measured results) for the water quality constituents (Slides 12-14), with possible (if time permits) statistical analyses (e.g., MSE) depending on measured data quality

Jordan River and Utah Lake at Different Times

A significant amount of Input Parameters in WASP are <u>constant</u> throughout the ENTIRE simulation period.

